CHEMISTRY LETTERS, pp. 1237-1238, 1977. Published by the Chemical Society of Japan

SYNTHETIC APPROACH TO A NEW HETEROCYCLE, ISOINDOLO[2,1-c]THIAZOLE¹⁾

Hiroshi SHIMOHARADA, Shigehiko IKEDA, Shoji KAJIGAESHI, and Shuji KANEMASA*

Department of Industrial Chemistry, Faculty of Engineering, Yamaguchi University, Tokiwadai, Ube 755

Isoindolo[2,1-c]thiazolium salt, a precursor of isoindolo[2,1-c]-thiazole, was synthesized via four steps starting from o-(bromoacety1)-benzoic acid. This salt reacted with acetic anhydride to afford the 5-acetyl derivative which underwent intramolecular 10π cyclization upon treatment with triethylamine.

Attempt to synthesize a new conjugate system is essential for studies of cycloaddition reactions. Pyrrolo[1,2-c]thiazole, a condensed nitrogen heterocyle with a tetravalent sulfur moiety, is expected to behave as 8π or 4π addend in cycloaddition reaction. However, no any synthetic method is available for the preparation of both pyrrolo[1,2-c]thiazole and its benzo derivative, isoindolo[2,1-c]thiazole. Potts and his co-worker²⁾ have recently reported the preparative method of thiazolo[3,4-b]-indazole and the [4+2] cycloaddition reaction to maleimide across the thiocarbonyl ylide dipole. The authors communicate here a preparative method for the precursor of isoindolo[2,1-c]thiazole.

The general synthetic routes to tetravalent sulfur systems $^{3)}$ were ruled out by the thermal instability which would be due to the presence of o-

quinoid and tetravalent sulfur unit. Isoindolo[2,1-c]thiazolium salt will, however, serve as a precursor of isoindolo[2,1-c]thiazole.

The reactions of o-(bromoacetyl)benzoic acid $\underline{1}$ with thiobenzamide or thioacetamide in acetone gave the corresponding thiazolium bromides $\underline{2a}$ (mp 246-248°C) or $\underline{2b}$ (mp 231-234°C), which liberated free thiazolylbenzoic acids $\underline{3a}$ (mp 156-158°C) or $\underline{3b}$ (mp 145.5-146.5°C) upon treating with an equivalent amount of aqueous sodium hydroxide. Thioformamide did not precipitate the thiazolium salt under various conditions. The lithium aluminum hydride (LAH) reduction of $\underline{3}$ in dioxane or tetrahydrofuran led to the formation of alcohols $\underline{4a}$ (mp 74-75°C) or $\underline{4b}$ (viscous oil). In this reduction, the solution of $\underline{3}$ is to be carefully added to the suspension of LAH below 60°C in order to avoid violent reaction. The alcohols $\underline{4a}$ and $\underline{4b}$ were brominated by refluxing with dry hydrogen bromide in carbon tetrachloride and toluene $\underline{4}$, respectively, to give the expected precursors $\underline{5}$.

<u>5a</u>: mp 270-273°C (decomp.), m/e 250 (M⁺+1), δ (ppm, in DMSO- d_6) 6.03(2H, s, CH₂), 8.77 (1H, s, 1-H), 7.60-8.28(9H, m, aromatics).

<u>5b</u>: mp 257-259°C (decomp.), m/e 187(M⁺), δ (ppm, in DMSO- d_6) 3.07(3H, s, CH₃), 5.68(2H, s, CH₂), 8.33(1H, s, 1-H), 7.44-8.10(4H, m, aromatics).

These salts $\underline{5}$ were found to contain water of crystallization. In order to remove the water, $\underline{5a}$ was refluxed in acetic anhydride. However, 5-acetyl derivative $\underline{6}$ (mp 251-252°C(decomp.)) was obtained in 30% yield instead of the unhydrous salt. In contrast, the same reaction of $\underline{5b}$ failed in both removal of the water and acetylation.

Isolation of isoindolo[2,1-c]thiazoles was unsuccessful because of the thermal instability. Thus, the treatment of 5a with 1,5-diazabicyclo[5.4.0]undec-5-ene (DBU) or aqueous sodium hydroxide caused a coloration into deep blue which rapidly disappeared giving unidentified powders. However, the generation of isoindolo[2,1-c]-thiazoles was proved by its trapping with some electron-deficient olefins 5). Furthermore, $\underline{6}$ was treated with triethylamine (TEA) to give $\underline{7}$ (mp 152-154°C) in quantitative yield which seemed to be formed via intramolecular 10π cyclization of acetylisoindolo-[2,1-c]thiazole.

 $\underline{6}$: $\nu_{\text{C=O}}$ 1725 cm⁻¹, m/e 291(M⁺), δ (ppm, in CF₃COOH) 2.64(3H, s, CH₃), 7.56(1H, s, CH), 8.34(1H, s, 1-H), 7.84-8.26(9H, m, aromatics).

7: m/e 291(M^+), δ (ppm, in CDCl₃) 2.51(3H, s, CH₃), 7.03-7.89(10H, m, 1-H and aromatics).

REFERENCES AND NOTES

- 1. Part 3 of this series "Peripheral Conjugate Systems". For part 2, M. Watanabe, S. Kajigeshi, and S. Kanemasa, Synthesis, 1977, in press.
- 2. K. T. Potts and J. L. Marshall, J. Org. Chem., 41, 129(1976).
- K. T. Potts and D. McKeough, J. Amer. Chem. Soc., 96, 4268(1974); K. T. Potts,
 J. Baum, E. Houghton, D. N. Loy, and U. P. Singh, J. Org. Chem., 39, 3619(1974);
 K. T. Potts, E. Houghton, and U. P. Singh, ibid., 39, 3627(1974).
- 4. Bromination of $\underline{4b}$ in carbon tetrachloride gave the HBr salt of bromomethyl derivative which was converted into 5b on refluxing in toluene.
- 5. [8+2] Cycloadducts were obtained with maleates, fumarates, and acrylates.
 - S. Ikeda, H. Shimoharada, S. Kajigaeshi, and S. Kanemasa, unpublished data.